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1. Model

1.1 Principles
The goal is to find an estimate y of the variable y
with a linear combination of p predictors xy,...,x,

$=Bo+Bixi+--+Bpx, (1)

The estimation of the intercept BO and the slopes
Bi..pisdone by the least square method which min-
imises the Residual Sum of Squares (RSS)

n

RSS = Z lvi— (ﬁo-i—ﬁlxil +---+ﬁpxip)]2 (2)
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The average of the RSS calculated over the n
points is called the Mean Squared Error (MSE)

R
msE — 855 (3)
n

Sales

0 50 100 150 200 250 300

TV
Figure 1. Linear regression fit (p = 1), y=Sales and
X1=TV

The presence of a random noise term € in the
true relationship between xand yvariables implies
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that the true population mean u can only be ap-
proximated by the sample mean y = fi. Assuming
that the observations are uncorrelated, the stan-
dard error of fi is calculated from the variance
of the noise parameter Var(¢) = o> which gives
SE(l) = o2 /n.

Most of the time ¢ is not known, but we can esti-
mate it with the Residual Standard Error (RSE)

RSS
(n—p—1)

This estimate of o is also used to calculate
the standard errors on the parameters SE(S;)".
Those errors are needed to get the confidence
intervals B; 4+ a - SE(fB;) which measure the uncer-
tainty on coefficients”. Not to be mistaken with the
prediction interval that quantifies the expectation
on the value of a data point (ie error bands).

RSE = ~0C (4)

1.2 Response-predictor relationship
To test for a relationship between the response
and the p predictors, we have 2 choices:

« t-statistic to test how far from 0 each f3; are, in
terms of standard errors

b0
SE)

(6)

The p-value is the probability of finding a value
equal or bigger than [¢|. It is calculated by in-
tegrating the t-distribution with n —2 degrees
of freedom from [f| to « as in Figure 2 (left).
The smaller it is, the less likely we are to
find a B; that far from O, therefore the higher
the chance of a relationship between the re-
sponse and the jth predictor.

Note however there is always a 5% chance of
observing a p-value below 0.05.

e F-statistic to test that at least one predictor in
a subset g of p predictors is linked to the re-
sponse, ie at least one of the f, is non-null,
where g € [1,p].

(RSSy)—RSS)/q

F=Rssim—p-1) ()

1In the case where p = 1, it gives
2
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SE(Bo)? = o?[ . sEB)?
2For the 95% confidence interval, o is the 97.5% quan-
tile of the t-distribution with n —2 degrees of freedom (the t-
distribution converges toward a gaussian as nincreases).
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where RSSy is the RSS of the model where only
the p— ¢ predictors are used”.

t-test with 1 dof F-test with 3 and 5 dof
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Figure 2. Example of t (left) and F (right) statistics.

1.3 Miscellaneous

Categorical predictors When a predictor is qual-
itative, a baseline is defined by default. In the
absence of interaction terms with categorical
predictors, the category effect is independent
of other predictor values.

Additive assumption The effect of a change in x;
onyisindependent of other predictors. Adding
interaction terms will break this assumption.

Hierarchical principle Always include the main
effects of the predictors thatare involvedinin-
teraction terms, even if their p-values is big.

Linear assumption A change of y due to one unit
changeinx;isconstant regardless of the value
of x;. Adding polynomial terms will break that
assumption.

2. Diagnostics

2.1 R’ measure
A first measure of the model accuracy in the RSE.
It measures the lack of fit of the model to the data
but is expressed in measure of y therefore is not
general to every datasets. A better metric is the R?
test
RSS
RP=1-—"= 8
TSS ®)
TSS is the total sum of squares TSS = Var(y) =
YU, (yi—¥)% 1t represents the total amount of
variance in the response previous to the fit.

RSS is the amount of variance that is left unex-
plained once the fit is performed.

R? represents the proportion of variance explained
by the fit. The closer to 1, the better the fit |

3See this tool for a live p-value calculation demo with tand F
distributions.
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2.2 Residual plot

Using a linear model implies that your data seems
linear. A good way of checking this is by plotting
the residuals vs the fitted values: it should be con-
stantly centred around O like in the right top right
panel of Figure 3. This residual plot also allows
to check for non-constant variance of the error
terms, or heteroscedasticity, by looking for a funnel
shape. This is important to ensure that 6% = Var(¢)
is constant since the calculation of confidence in-
tervalsanderrorsrely uponit. Taking the log of the
response or if the response is an average over n;
values, using a weighted mean instead could help

(067 = 62 /n;), see bottom panels of Figure 3

Residual Plot for Linear Fit Residual Plot for Quadratic Fit
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Figure 3. Top: Residuals vs fitted values for linear
(top left) and quadratic (top right) regression.
Bottom: illustration of heteroscedasticity.

2.3 Tracking

SE(B]-) are calculated assuming uncorrelated er-
rors. If there is correlation, SE(B;), and therefore
the confidence intervals, will be underestimated.
Imagine all data is duplicated, we have a sample
of size 2n instead of n, same predictions but con-
fidence interval will be narrower by a factor v/2.
Such correlations often occurintime series, check
for tracking in the residuals as in Figure 4.

2.4 Outliers and High-leverage
e High-leverage: observation with an unusual x;.
This impact a lot the regression fit. These
points are identified with the leverage statis-
tic:

(xi —%)*

POV C )
Yo X —%)?

(9)


http://courses.atlas.illinois.edu/spring2016/STAT/STAT200/pt.html
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Figure 4. Top: no tracking (small correlations),
Bottom: tracking (high correlations)

 Qutliers: observation for which y; is far from §;
givep x;. Outliers tend to increase RSE, hence
SE(P) and p-values. To determine these points
several measures are possible such as the
studentized residuals®:

A

Yi = Y(-i)
MSE(_i)(l —h;)

(10)

where the index (—i) denote the value for the
ith point calculated from a model where it was
removed.

Both outliers and high-leverage can be spot-
ted with the Cook’s distance which measures how
much all of the fitted values change when the ith
observation is removed.

D — Yo B =9 -i)’ _ (i —3i)° [ hi ] (11)
! p-MSE p-MSE L(1—h;)?

© - 200 w o 020
§ ¥ é @ 410
é 7 o o o ‘%’ A (8
§ OOCDO © § o %
h ° @&)08 % [} %ﬁ

o " o] Q>O

-2 0 2 4 6 0.00 0.05 0.10 0.15 0.20 0.25

Fitted Values

Figure 5. Studentized res.(left) and leverage (right)

Leverage

2.5 Collinearity

If two predictors are collinear, it will be hard to dis-
tinguish their individual effects. This will increase
the standard errors of their coefficients SE(j3;) and
lead to a poor t-test. To detect direct collinearity,
one can just look at the correlation matrix between
all predictors.

Y (i — %) — )
\/Zt lxl_x \/Zt ly y

“NB: Studentized residuals do not consider the i’ point while
the standardized residuals do use the full dataset.

Cor(X,Y) =
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However, in the case of multicollinearity, it's better
to look at the variance inflation factor:

VIF (13)
— w2
: Ryix.,
where R2 is the R? of a regression of X; onto all

Xj1x_j
the otherl pr‘edlotors. It is equivalent to the vari-
ance of B; calculated with a model containing all
the predictors divided by the variance of ﬁ, ina
model with only X;. RX X close to one means VIF

high and presence of oollmeamty.

3. KNN Regression

If not sure about the linearity of the data, itis possi-
ble to use a non-parametric regression approach,

(14)

*Zyl

x,e/%)

This could work better than linear regression if the
number of predictors remain low (curse of dimen-
sionality).
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