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1. Models
The models below are all classifiers. The goal is to
assign the correct label to the response given a set
of p predictors X .

1.1 Logistic Regression
The logistic regression estimates the conditional
distribution p̂ of the response Y given the predic-
tors X . To keep that probability between 0 and 1,
the logistic regression uses the logistic function:

p(x) =
ex

1+ ex (1)
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Figure 1. The logistic function

The estimation of the probability gives

p̂(X) =
eβ̂0+β̂1X1+...+β̂pXp

1+ eβ̂0+β̂1X1+...+β̂pXp
(2)

where the coefficient estimates β̂ are found
through themaximum likelihoodmethod. Note that
the logit (or log-odds) is linear in X 1

log
( p̂(X)

1− p̂(X)

)
= β̂0 + β̂1X1 + ...+ β̂pXp (3)

The logistic regression limitations are

• The parameter estimates are quite unstable,
especially when the classes are well sepa-
rated or when the number of observations n
is small and the predictor distributions are
gaussian.

• The model becomes harder to interpret when
the response classes goes beyond 2.

1The quantity
p(X)

1− p(X)
is called the odd.

1.2 Linear discriminant analysis
LDA uses Bayes theorem to find the estimation of
the posterior probability, the probability that the re-
sponseY is of class k given that the predictorsX = x

p̂k(x) = Pr(Y = k|X = x) =
π̂k f̂k(x)

∑K
l=1 π̂l f̂l(x)

(4)

where π̂k is the estimate of the overall prior prob-
ability that a randomly chosen observation comes
from class k. It is by default π̂k = nk/n.

f̂k(x) = Pr(X = x|Y = k) is the density function es-
timation of X for an observation from the kth class.
The linear discriminant assumes that f̂k has amul-
tivariate Gaussian distributionwith µ̂k the estimated
mean vector of X (with p components) and Σ̂ΣΣ =
Cov(X) the p× p estimated covariance matrix com-
mon to all K classes.2

f̂k(x) =
1

(2π)p/2|Σ̂ΣΣ|1/2
exp

(
− 1

2
(x− µ̂k)

T Σ̂ΣΣ−1
(x− µ̂k)

)
(5)

Plugging everything into 4, we can show that the
response is assigned the class k for which

δ̂k(x) = xT Σ̂ΣΣ−1µ̂k −
1
2

µ̂T
k Σ̂ΣΣ−1

+ log(π̂k) (6)

is the largest. This discriminant is linear in X ,
hence the name of the model. The linear decision
boundaries can be find by finding the x such that
δ̂k = δ̂l ,k ̸= l.
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Figure 2. LDA (dotted black), Bayes (dashed purple)
and QDA (green) decision boundaries. Left: the 2
classes have the same vaiance. Right: the 2
classes have different variances.

2In the case where p = 1 predictor, µ̂k =
1
nk

∑
i:yi=k

xi and σ̂2 =

1
n−K

K
∑

k=1
∑

i:yi=k
(xi − µ̂k)

2, which gives δ̂k(x) = x · µ̂k

σ̂2 −
µ̂2

k
2σ̂2 + log(π̂k)

1
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1.3 Quadratic discriminant analysis
The difference of QDA with LDA is that each class
can have its own covariance matrice: Σ̂ΣΣ → Σ̂ΣΣk. The
discriminant is now quadratic in X

δ̂k(x) =−1
2
(x− µ̂k)

T Σ̂ΣΣ−1
k (x− µ̂k)−

1
2

log|Σ̂ΣΣk|+ logπ̂k (7)

QDA is more flexible since each class get to have
a covariance matrix. This leads to quadratic de-
cision boundaries, but also to the estimation of
K p(p+ 1)/2 parameters, against only K p for LDA.
LDA is generally recommendedwhen there are few
training observations (to reduce the variance) while
QDA is a better choice with large number of train-
ing observations.

2. Diagnostics

A common diagnostic for classifier is the confusion
matrix as shown in Table 1 where the ”+” or Non-
null class defines the specific response we want
the label for.

Predicted class
- or Null + or Non-null Total

True - or Null True Neg. (TN) False Pos. (FP) N
class + or Non-null False Neg. (FN) True Pos. (TP) P

Total N∗ P∗

Table 1. Confusion matrix

This allows to easily compute the measures for
classification diagnostic in Table 2.

Name Definition Alternative
True Neg. rate TN/N Specificity
False Pos. rate FP/N 1-Specificity
True Pos. rate TP/P Sensitivity, Recall
Pos. Pred. rate TP/P∗ Precision
Neg. Pred. rate TN/N∗

Accuracy (TN+TP)/(N+P)
Table 2. Diagnostic measures

Specificity: percentage of true negative observa-
tions correctly identified by the model.

Sensitivity (recall): percentage of true positive ob-
servations correctly identified by the model.

Precision: percentage of predicted positive obser-
vations correctly identified by the model.

Accuracy: percentage of total observations cor-
rectly identified by the model.

Classifiers derived from Bayes classifiers such
as LDA and QDA assign labels to the highest prob-
ability class (the class k which has the highest δ̂k).
If K = 2, it corresponds to a threshold of 0.50. This
threshold can be tuned, which will affect the above
values.

Two curves are used to summarised these mea-
sures: the ROC curve3 that displays recall vs. 1-
specificity and the precision-recall curve.

Figure 3. The ROC Curve

3Receiver Operating Characteristics
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