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Introduction

Ordinary least squares regression has low bias
and provided n > p, low variance too. Butif n ~p
orn< p, there will be more variability (reaching in-
finity in the second casel) which will affect the pre-
diction accuracy. Such high number of predictors
also reduce the model interpretability. The solu-
tion is to constrain or shrink the estimated coeffi-
cient and/or to perform some feature selection.

1. Subset selection

1.1 Best subset selection

1 Start by fitting a model with no predictor
2 Forkinlz2,..p
2.1 Fit all (?) models that contain exactly k

predictors

2.2 Pick the best among the () models, .

using RSS, R? or deviance'

3 Selectthe best of the . using cross-validated
criterion (C,, AIC, BIC, adjusted R?)

Note that RSS or R* will always have smaller train-
ing error as pincreases. Hence we use a different
set of metrics in step 3. This method is computa-
tionally heavy: if p =20, there are more than 1.106
models to try (27).

Lequivalent of RSS for maximum-likelihood fit, -2xmax(log-
likelihood)

1.2 Stepwise selection

Stepwise selection can be forward or backward
depending of the starting point. If we start with
no predictor and continually increase the num-
ber of predictor considered, we go forward. If we
start with all p predictors and progressively re-
move the least significant ones, we go backward.

1 Start with .#; that has no predictor
2 Forkinl2,..p

2.1 Consier all p—k models that augment the
predictors in . with one additional pre-
dictor

2.2 Choose the best among the p —k models
called .#1 (choose with RSS or R?)

3 Select the best among all the .4, ...,.#, with
Cp, AIC,...

This method has the advantage of only scan 1+
p(p+1)/2(211 model for p =20). Unlike backward,
forward stepwise selection can be applied even
when p > n, although for both, the best set of pre-
dictor is not guarantee. Hybrid method that try to
benefit from best subset and stepwise can be per-
formed where at each iteration, a a predictor is
added and another can be removed.

1.3 Selection criterion
To select the mode, one can use a criterion or use
cross-validated test error.

1(RSS+2d62) (1)

n

Cp

where d is the number of predictor and 6 the es-
timate of the variance of the error €. The Akaike
information criteria is often used for model fit with
maximum likelihood.

1

AIC = — (RSS+2d67) (2)
né

Similarly, The Bayesian information criterion is quite

similar

BIC = — (RSS + log(n)d6?) (3)

né?
All of those have theoretical justifications and we
should select low value of those. Alternatively, the
adjusted R” tries to penalise additional noisy pre-
dictors and the higher the better.

RSS/(n—d—1)

djusted R> =1—
adjuste 7SS/(n—1)

(4)
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2. Shrinkage

2.1 Ridge
Ridge is similar to OLS, except the coefficients ﬁR
are estimated by minimizing

14
RSS+2 Y B? (5)
j=1

where the A term is a shrinkage ¢, penalty that de-
creases when the B; are close to 0.

e A =0corresponds to OLS

* A —eocorresponds to ffj — 0, reduction of vari-
ance and increase in bias.

Note that now the coefficients are not scale equiv-
ariant anymore, hence it is best to standardise the
predictors before performing a ridge regression.
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Figure 1. Left: values of standardised f; as a
function of A. Right: square bias (black), variance
(green) and test mean error (purple) for ridge

regression.

2.2 LASSO

Ridge regression always considers all p predic-
tors, even if their coefficients get close to 0. The
lasso overcomes this because the coefficients
minimise

)4
RSS+1) (Bl (B)
=1

which uses a £, penalty that can set coefficients
Bj=0for alarge enough 4. Hence it can be used
fo variable selection. Cross-validation error can be
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Figure 2. Left: values of standardised j3; as a
function of A. Right: square bias (black), variance
(green) and test mean error (purple) for lasso

regression.
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used to select the value of A.
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Figure 3. Contour of the RSS (red) and constraint
functions for LASSO (|| + |B:2] < s) and ridge

B+ B3 <)

3. Dimension reduction

Let Z;,...Zy represent M < p linear combinations of
the predictors X;.... X,

P
Zn =Y, OjmX; (7)
j=1

The regression model becomes

M
Yi= 6o + Z OnZim + & (8)
m=1
where
M
ﬁj - Z em(pjm (9)

m=1

The coefficients are now constrained to be of the
form of 9.

* M < preduces the variance of the coefficiants

e M =pisequivalent to OLS

3.1 Principal components regression (PCR)

The first principal component Z; is the direction
along which the data vary the most. The second
principal component Z, needs to be orthogonal to
Zi. PCR consists in a least square regression on
the first M principal components Zy, hence it as-
sumes that the directions Z,, ..., Zy° in which the pre-
dictors Xi,...,X, vary the most are the directions
that are associated with Y. It is not a subset selec-
tion since linear combination of all predictors are
used to build the principal components. Similar to
A in ridge and lasso cases, M can be determined
with cross-validation error and the predictors X,
need to be standardised before finding the Z.

3.2 Partial least squares (PLS)

In PCR, there is no guarantee that the Z that best
explain the predictors X also best explain the re-
sponse Y. Instead PLS is supervised and assigns

2found in an unsupervised way



Z = Z?Zl ¢;1X; where ¢;; correspond to the coef-
ficient of the regression of ¥ against X;. Hence
the highest weights are on the variables that are
strongly related to the response. To calculate Z,,
we use the residuals from the regression of Y on
Z1 and process as for Z;, and iterate until Zy,. While

n % % 3

Ad Spending
Ad Spending

2 © 0

Figure 4. I_eft:m?:"and Z, directions of PCA. Right: Z;
direction of PLS (solid) and PCA (dotted).
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PLS can reduce bias, it can increase variance.

3.3 High-dimensional data

When p~nor p >n, regressions are not appropri-
ate, as shownin Figure 5, it's too flexible. Moreover
Cp. AIC, BIC, and adjusted R? are not good in this
case as the estimate of 6 = 0.
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Figure 5. Least regression metrics with n =20
observations and increasing number of

predictors that are unrelated to the response
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