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1. Basis function
Using a family of fixed and known functions or
transformations b1, . . . ,bK applied to the predictors
X , we fit the model

yi = β0 +β1b1(xi)+ · · ·+βKbK(xi)+ εi (1)

This corresponds to polynomial regressions if
b j(xi) = x j

i or piecewise constant (step functions)
when b j(xi) = I(c j ≤ x j < c j+1).

2. Splines

2.1 Regression splines
A regression spline is a combination of the two
models cited above: we fit a polynomial for differ-
ent ranges of xi. K knots are used to define the
ranges of xi. To make sure a degree d spline is
smooth, the first d −1 derivatives of the piecewise
polynomials need to be continuous at the knots.

Cubic spline Taking d = 3, the cubic splines exam-
ple has 8 degrees of freedom (2 × 4 β ) and 3 con-
straints (continuity of the 0, 1 and 2 derivatives)
which gives a final 5 degrees of freedom. A cubic
spline will always have 4+K degrees of freedom.
In the basis function framework, we have

yi = β0 +
3

∑
d=1

βdbd(xi)︸ ︷︷ ︸
polynomial

+
K

∑
k=1

βk+3bk(xi)︸ ︷︷ ︸
truncated power basis

(2)

bd = xd , bk =

{
(x−ξk)

3, if x ≥ ξk

0, otherwise
(3)

where ξk are the knots. The bk functions ensure the
continuity of the first 2 derivatives. Once again we
observe thatwe only needK+4 parameters, hence
the number of dof.
The splines can have high variance at the outer

range. A natural spline imposes additional bound-
ary constraints (linear at the boundary). Knots
are often distributed uniformly and their number
(or dof number) is determinedwith cross-validated
RSS.

Figure 1. Cubic spline with 3 knots

2.2 Smoothing splines
A smoothing spline g has a knot at every xi andmin-
imises

n

∑
i=1

(yi −g(xi))
2︸ ︷︷ ︸

loss

+λ
∫

g′′(t)2dt︸ ︷︷ ︸
penalty

(4)

The loss part encourages to fit the data well and
the penalty penalizes the variability1. λ is a pa-
rameter that control the smoothness of the spline
and the effective degrees of freedom d fλ In other

λ 0 → ∞
Fit overfitting good underfitting
d fλ n ↘ 2

words, λ controls the bias-variance trade-off, or the
level of shrinkage.

3. Local regression

Local regression is a memory-based method as f̂
needs all the data for each estimation at x0. It
consists of a multiple weighted linear regression.

1 Define the span s = k/n using k training points
xi which are the closest to x0

2 Assign a weight Ki0 = K(xi,x0) to each point in
the neighborhood so that the furthest away
from x0 gets the smallest weight.

3 Fit a weighted least squares regression of the yi
on the xi by finding β̂0 and β̂1 that minimize

n

∑
i=1

Ki0 · (yi −β0 −β1xi)
2 (5)

1the first derivative represent the local slope, the second
represents the roughness/wiggly trend
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4 The fitted value at x0 is given by f̂ (x0) = β̂0+ β̂1x0

Figure 2. Left: Local regression algorithm (orange)
vs true (blue). Right: Local regression with
different span values s

4. Generalised additive models (GAM)

GAM offers a framework to extend non-linearity to
several predictors

yi = β0 +
n

∑
j=1

f j(xi j)+ εi (6)

It adds the contribution of each f j function calcu-
lated on each predictor. Additivity means we can
still examine the effects of each predictor on the
response independently of other predictors. This
can also be used for classifications (ie replacing yi
with log(p/(1− p))).
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