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1. Decision Trees
Trees split the predictors space into R j boxes that
are found via recursive binary splitting, a greedy ap-
proach to find the best split at each step (not look-
ing at further potential split).

Figure 1. Two representations of a regression tree

1.1 Tree building
The choices of predictor X j and cutpoint s to per-
form the split are dictated by the largest decrease
in the RSS for regression.

RSS =
J

∑
j=1

∑
i∈R j

(yi− ŷR j)
2 (1)

with ŷR j the mean response value in box R j.
Classification boxes use the smallestGini indexG

(eq. 2) or entropy D (eq. 3) for classification

G =
K

∑
k=1

p̂mk(1− p̂mk) (2)

with p̂mk the proportion of training observations of
class k in the m box.

D =
K

∑
k=1

p̂mklog(p̂mk) (3)

The smallerG andD, the more pure the node (ie. all
p̂mk close to 0 or 1). A large tree T0 can be devel-
oped until a criterion is reached (ex: no box with
more than 5 obs), but this model will surely overƤt
the training data.

1.2 Tree pruning
To avoid overfit, we select a subtree T via weak-
est link pruning (or cost-complexity). Each α corre-
spond to a subtree T ⊂ T0 with |T | terminal nodes
that minimises

|T |

∑
m=1

∑
i:xi∈Rm

(yi− ŷRm)
2 +α|T | (4)

where Rm is the box corresponding to the mth ter-
minal node.
The α term is a penalty to pay for having many

terminal nodes (α = 0 means T = T0) and can be
found by cross-validation (using RSS, Gini index,
entropy or classification error rate).

α 0 → ∞
Fit overfitting good underfitting
|T | (tree size) ↘
Training error ↗
Test error ↘↗

Trees often suffer from high variance: a small
change in the data can have a big impact on the
tree shape.

2. Ensemble methods
Recall that averaging a set of observations re-
duces the variance, we can improve the tree pre-
diction accuracy with this principle.

2.1 Bagging
Using B bootstrapped samples of the training data,
we can build B different deep decision trees f̂ ∗ (not
pruned) and average over them.

f̂bag(x) =
1
B

B

∑
b=1

f̂ ∗b(x) (5)

Usually B = 100 is sufficient.
The bagged trees used bootstrapped samples

which correspond to ∼ 2/3 of the total training
data. Hence we obtain B/3 out of bag (OOB) pre-
dictions for the ith obs. Averaging (regression) or
taking a majority vote (classification) on these OOB
prediction gives a single OOB prediction for the n
obs. The MSE or classification error can then be
estimated.
Althoughwe lost the interpretability of the single

decision tree, we gain a measure of variable impor-
tance by measuring the total decrease of RSS or
Gini index for split performed on a given predictor
as in Figure 2 (Right). Moreover, increasing B will
not lead to overfitting !
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Figure 2. Left: Test errors comparison. Right:
bagging variable importance

2.2 Random Forests
To further reduce the variance and improve pre-
diction accuracy, random forest decorrelates trees
(so that there is no average on correlated obs.).
At each split, we only consider a fraction m/p of
the predictors selected randomly. Often we select
m =
√

p (bagging corresponds to m = p).

Figure 3. Left: RF test error for different m

2.3 Boosting
Boosted decision trees (BDT) are grown se-
quentially and fitted on residuals (no boot-
strap samples). For each iteration, f̂ is
improved where it does not perform well.

1 Set f̂ (x) = 0 adn ri = yi for all i in training set

2 For b = 1, . . . ,B do

a Fit a tree f̂ b with d splits (|T| = d +1) to the
training data (X ,r).

b Update f̂ : f̂ (x)← f̂ (x)+λ f̂ b(x)

c Update the residuals ri← ri−λ f̂ b(xi)

4 Output the boosted model f̂ (x) =
B
∑

b=1
λ f̂ b(x)

• B is the number of trees. Unlike bagging and
RF, BDT can overfit when B is big. We can us
CV to determine it

• λ is the learning rate, usually around 0.005. If
too small, B needs to be bigger for good per-
formance

• d is the number of splits in each tree, or interac-
tion depth. d = 1 is like fitting an additivemodel.

Figure 4. BDT and RF test error comparison
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