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1. MaximumMargin Classifier

SVMs rely on the separating the predictor space
with hyperplanes and assign a response value
based on which side of the hyperplane a given ob-
servation is.
In the binary classification case with yi ∈ {−1,1},

a separating hyperplane takes the form

yi(β0 +β1xi1 + · · ·+βpxip)> 0 (1)

For a new observation x∗, the sign of f (x∗) = β0 +
β1x∗1 + · · ·+βpx∗p would determine the value of y∗. In
the case where the data are completely separa-
ble, there exits several of such planes as in the left
panel of Figure 2.

A smart way of selecting a plane among all can-
didates is to take the one which maximise the mar-
ginM, minimal distance from the observation to the
hyperplane. The bigger the margin, the more con-
fident we are about the classifier predictions.

Figure 1. Illustrations of the maximal margin
classifier.

The parameters β0,...,p and M are found
by solving the optimisation problem

Maximize
β0,β1,...,βp,M

M subject to

•
p
∑
j=1

β 2
j = 1,

• yi(β0 +β1xi1 + · · ·+βpxip)≥ M

The obs that define themargin are called support
vectors. They are the only observations needed to
build the model. The addition of an extra observa-
tion on the correct side of the margin would have
no effect on themodel, but if it is on thewrong side,
the hyperplane would need updating.

The main drawback of this model is that most of
the time, this problem has no solution: there is no
plane that can clearly separate all observations.

2. Support Vector Classifier

To extend the maximummargin classifier, the sup-
port vector classifier allows some obs to be on the
wrong side of the margin. This brings greater ro-
bustness and better classification onmost training
observations.

Maximize
β0,β1,...,βp,ε1,...,εp,M

M subject to

•
p
∑
j=1

β 2
j = 1,

• yi(β0 +β1xi1 + · · ·+βpxip)≥ M(1− εi),

• εi ≥ 0,

•
n
∑

i=1
εi ≤C with C ≥ 0

The slack variable εi defines the position of the ith
observation (Table 1). Observations with εi > 0 are
called support vectors.

εi = 0 correct side of margin
0 < εi < 1 wrong side of margin (violation)
εi = 1 on hyperplane
εi > 1 wrong side of hyperplane

Table 1. Meaning of slack variables

The tuning parameter C controls the severity of
the violations. As C increases, more violations are
allowed, hence M increases too. The model has a
lower variance but higher bias.

2.1 Link to regression
The above optimisation algorithm can be rewritten
with the hinge loss.

Minimize
β0,β1,...,βp

n

∑
i=1

max[0,1− yi(β0 +β1xi1 + · · ·+βpxip)]︸ ︷︷ ︸
Hinge Loss

+λ
p

∑
j=1

β 2
j (2)
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Figure 2. Illustrations of the support vector
classifier with 2 values of C: left: large, right:
small.

The use of the ridge penalty means that large λ
lead to small β j, hence more violations to the mar-
gin are tolerated, thus C should be large too.
Observations with yi f (xi) ≥ 1 are on the correct

side of the margin and have a loss of 0, so they do
not contribute to improving the model.

Figure 3. Comparison of Hinge loss and log reg.
loss

3. Support VectorMachines

In many cases, we cannot separate the obs with
linear borders. To extend the support vector clas-
sifier to non linear boundaries, the notion of kernel
is introduced.

3.1 Definition
Kernels are functions that quantify the similarity of
2 observations. It can be shown that the solution to
the linear support classifier (ie the β j and M) only
depends on the inner product of the observations

K(xi,xi′) = ⟨xi,xi′⟩=
p

∑
j=1

xi jxi′ j (3)

Here K is the linear kernel. The support vector
classifier can be represented as

f (x) = β0 +
n

∑
i=i

αiK(x,xi) (4)

but αi is non-zero only if the observations are sup-
port vectors, hence

f (x) = β0 + ∑
i∈S

αiK(x,xi) (5)

Expanding each kernel gives the relation between
the αi and the β j.

3.2 Kernels
To expend to non linear boundaries, we just need
to use another kernel definition, like polynomial of
degree d

K(xi,xi′) =
(
1+

p

∑
j=1

xi jxi′ j
)d (6)

or a radial kernel as shown in Figure 4.

K(xi,xi′) = exp
(
− γ

p

∑
j=1

(xi j − xi′ j)
2) (7)

Figure 4. SVM with polynomial kernel of degree
d = 3 (left) and radial kernel (right).

SVMs are usually for binary classification. The
most popular extensions to K > 2 classes are
one-vs-one classification where we construct

(K
2

)
SVMs each of of which compares a pair of classes,
or one-vs-all classification where we fit K SVMs
comparing the kth class to the others.
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