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1. Principal Components Analysis

PCA aims at reducing the dimensionality of a
dataset while minimising the loss of information (ie
keep high variance). To find thefirst principal com-
ponent Z1 of a set of features X1, . . . ,Xp, we first
need to centre1 all the X j and look for a linear com-
bination of the form

zi1 = ϕ11xi1 +ϕ21xi2 + · · ·+ϕp1xip ,
p

∑
j=1

ϕ 2
j1 = 1 (1)

that has the largest variance.2 The coefficients ϕ1 j
are called loadings of PC1, they form the loading
vector ϕ1 and zi1 are the scores of PC1.
The loading vector ϕ1 defines the direction in the

feature space along which the data vary the most.
Projecting the n data points x1, . . . ,xn into ϕ1 gives
the scores z11, . . . ,zn1.
We proceed the same way for finding PC2, with

the added constraint that Z2 and Z1 are uncorre-
lated, which means ϕ2 ⊥ ϕ1. Figure 1 shows the
projection of a 3D dataset into the plane defined by
(ϕ1,ϕ2).

Figure 1. Projection into principal components
plane: it minimises the sum of squared distances
from each point to the plane.

It is possible to visualise the projected data and
the loading vectors into a single biplot as in Fig-
ure 2, that highlight the importance of scaling the
features.

1rescale so that the mean is 0
2This can be viewed as an optimisation problem:

Maximize
ϕ11,...,ϕp1

{1
n

n
∑

i=1
(

p

∑
j=1

ϕ j1xi j)
2

︸ ︷︷ ︸
z2
i1

}
subject to

p
∑
j=1

ϕ 2
j1 = 1

Figure 2. Biplots with scaled (left) and unscaled
(right) features.

1.1 Percentage of variance explained
In order to decide howmany principal components
are necessary, we need to find out the proportion
of variance explained (PVE) by each component.

The total variance (assuming features are cen-
tred) is

p

∑
j=1

Var(X j)=
p

∑
j=1

1
n

n

∑
i=1

x2
i j (2)

and the variance explained by the mth PC is

1
n

n

∑
i=1

z2
im =

1
n

n

∑
i=1

[ p

∑
j=1

ϕ jmxi j

]2
(3)

Hence the PVE is

∑n
i=1

[
∑p

j=1 ϕ jmxi j

]2

∑p
j=1 ∑n

i=1 x2
i j

(4)

From here we can build a scree plot as shown in
Figure 3.

Figure 3. Left: scree plot of % of variance explained
by each PC. Right: cumulative scree plot

2. Clustering

Clustering looks to find homogenous subgroups
among the observations using some measure of
similarity.
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2.1 K-means
K-means clustering splits the observations into K
subgroups Ck (k ∈ 1, . . . ,K) found by minimising the
within-cluster variations W (Ck). Note that all obser-
vations belong to exactly one cluster. If we use the
squared Euclidean distance as similarity measure,
we have

W (Ck) =
1

|Ck| ∑
i,i′∈Ck

p

∑
j=1

(xi j − xi′ j)
2 (5)

with |Ck| the number of obs in Ck. Hence the clus-
ters are found by solving the optimisation problem

Minimize
C1,...,Ck

{ k

∑
k=1

W (Ck)
}

(6)

This is hard to find the global minima, but a
local minima can be easily reached by the
following algorithm (illustrated in Figure 4.

1 Randomly assign a number 1, . . . ,K to each ob-
servation.

2 Iterate until the clusters stop changing:

a For each clusterCk, compute the centroid3

b Assign eachobs to the clusterwhose cen-
troid is the closest.

Figure 4. Illustration of the K-means algorithm.

Because there is no guarantee of reaching a
global minima, the final clusters will depend on the
initial random assignment. Therefore it is best to
run the clustering several times and select the con-
figuration which has the lowest objective value.

3the vector of p feature means for obs in cluster k

2.2 Hierarchical
If we don’t know the exact number of cluster
wanted, we can use hierarchical clustering, a
bottom-up agglomerative approach represented
by a dendrogram. Each leaf at the bottom repre-
sent a single observation. The leaves that fuse at
the bottomof the tree are closer to each other than
branches that fuse at the top, but it’s not because 2
leaves are next to each other than they are similar
(Figure 5)

Figure 5. Even if point 9 seems close to point 2 on
the dendrogram, it is not in the feature space.

To obtain the cluster, we can cut horizontally the
dendrogram: the higher the cut, the less cluster
we obtain as in Figure 6

Figure 6. Illustration of hierarchical clustering
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